skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lyu, Lingjuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 20, 2026
  2. Machine unlearning (MU) aims to remove the influence of specific data points from trained models, enhancing compliance with privacy regulations. However, the vulnerability of basic MU models to malicious unlearning requests in adversarial learning environments has been largely overlooked. Existing adversarial MU attacks suffer from three key limitations: inflexibility due to pre-defined attack targets, inefficiency in handling multiple attack requests, and instability caused by non-convex loss functions. To address these challenges, we propose a Flexible, Efficient, and Stable Attack (DDPA). First, leveraging Carathéodory's theorem, we introduce a convex polyhedral approximation to identify points in the loss landscape where convexity approximately holds, ensuring stable attack performance. Second, inspired by simplex theory and John's theorem, we develop a regular simplex detection technique that maximizes coverage over the parameter space, improving attack flexibility and efficiency. We theoretically derive the proportion of the effective parameter space occupied by the constructed simplex. We evaluate the attack success rate of our DDPA method on real datasets against state-of-the-art machine unlearning attack methods. Our source code is available at https://github.com/zzz0134/DDPA. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  3. Machine unlearning (MU) aims to remove the influence of specific data points from trained models, enhancing compliance with privacy regulations. However, the vulnerability of basic MU models to malicious unlearning requests in adversarial learning environments has been largely overlooked. Existing adversarial MU attacks suffer from three key limitations: inflexibility due to pre-defined attack targets, inefficiency in handling multiple attack requests, and instability caused by non-convex loss functions. To address these challenges, we propose a Flexible, Efficient, and Stable Attack (DDPA). First, leveraging Carathéodory's theorem, we introduce a convex polyhedral approximation to identify points in the loss landscape where convexity approximately holds, ensuring stable attack performance. Second, inspired by simplex theory and John's theorem, we develop a regular simplex detection technique that maximizes coverage over the parameter space, improving attack flexibility and efficiency. We theoretically derive the proportion of the effective parameter space occupied by the constructed simplex. We evaluate the attack success rate of our DDPA method on real datasets against state-of-the-art machine unlearning attack methods. Our source code is available at https://github.com/zzz0134/DDPA. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  4. Domain adaptation addresses the challenge where the distribution of target inference data differs from that of the source training data. Recently, data privacy has become a significant constraint, limiting access to the source domain. To mitigate this issue, Source-Free Domain Adaptation (SFDA) methods bypass source domain data by generating source-like data or pseudo-labeling the unlabeled target domain. However, these approaches often lack theoretical grounding. In this work, we provide a theoretical analysis of the SFDA problem, focusing on the general empirical risk of the unlabeled target domain. Our analysis offers a comprehensive understanding of how representativeness, generalization, and variety contribute to controlling the upper bound of target domain empirical risk in SFDA settings. We further explore how to balance this trade-off from three perspectives: sample selection, semantic domain alignment, and a progressive learning framework. These insights inform the design of novel algorithms. Experimental results demonstrate that our proposed method achieves state-of-the-art performance on three benchmark datasets--Office-Home, DomainNet, and VisDA-C--yielding relative improvements of 3.2%, 9.1%, and 7.5%, respectively, over the representative SFDA method, SHOT. 
    more » « less
    Free, publicly-accessible full text available June 11, 2026
  5. Data-free knowledge distillation (KD) helps transfer knowledge from a pre-trained model (known as the teacher model) to a smaller model (known as the student model) without access to the original training data used for training the teacher model. However, the security of the synthetic or out-of-distribution (OOD) data required in data-free KD is largely unknown and under-explored. In this work, we make the first effort to uncover the security risk of data-free KD w.r.t. untrusted pre-trained models. We then propose Anti-Backdoor Data-Free KD (ABD), the first plug-in defensive method for data-free KD methods to mitigate the chance of potential backdoors being transferred. We empirically evaluate the effectiveness of our proposed ABD in diminishing transferred backdoor knowledge while maintaining compatible downstream performances as the vanilla KD. We envision this work as a milestone for alarming and mitigating the potential backdoors in data-free KD. Codes are released at https://github.com/illidanlab/ABD . 
    more » « less